AccScience Publishing / IJOSI / Volume 8 / Issue 3 / DOI: 10.6977/IJoSI.202409_8(3).0007
ARTICLE

Design, development & performance evaluation of sustainable, hy-brid air-conditioning system for automobiles

Rupa Sunil Bindu1* Sandeep Shalgar2 Avinash Salunke1* Ankur Salunkhe1*
Show Less
1 D Y Patil Institute of Technology, Pimpri, Pune
2 Tata Technologies Limited, Pune
Submitted: 5 December 2023 | Revised: 8 May 2024 | Accepted: 21 June 2024 | Published: 30 December 2024
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Performanceof the vapor adsorption refrigeration system is based on controlling the pressure of refrigerant, multi fluid temperatures, ambient and cabin air temperatures,and humidity to maintain thermal equilibrium. A direct evap-orative cooling (DEC) system combined with adsorption refrigeration technique is sustainable as it is driven by vehicle exhaust. The heat potential in the exhaust gases of a vehicle which otherwise is going to be wasted to the atmosphere, can be (HAC). The designed and fabricated HAC model is fitted in a small vehicle and vehicle exhaust is provided to this model for finding its COP and cooling potential with the help of a customized data acquisition and controlling system. This research describes the design development and testing of an innovative HAC system for small cabin volume cars. The theoretical and actual COP of HAC system is derived at maximum blower speed and two DEC fans working conditions. The theoretical COP of HAC system varies from 0.57 to 0.66 and the actual COP varies from 0.57 to 0.47 with vehicle speed. As velocity increases COP decreases. Increased COP of the HAC system promises its easy adaptability for automotives at reduced cost.

Keywords
sustainable cooling technologies
direct evaporative cooling
specific cooling power
cellulose grid
vehicle compartment’s air cooling
vapor adsorption refrigeration
activated carbon granules
References
  1. Askalany, A. A., Saha, B. B., Ahmed, M. S., & Ismail, I. M. (2013). Adsorption cooling system employing granular activated carbon–R134a pair for renewable energy applications. International Journal of Refrigeration, 36(3), 1037–1044. https://doi.org/10.1016/j.ijrefrig.2012.11.009
  2. Astina, I. M., Zidni, M. I., Hasugian, H. R., & Darmanto, P. S. (2018). Experiment of adsorption refrigeration system with working pairs of difluoromethane and activated carbon modified by sulfuric and nitric acids. 20015. https://doi.org/10.1063/1.5046599
  3. Atan, R. (1998, February). Heat Recovery Equipment (Generator) in an Automobile for an Absorption Air-Conditioning System. https://doi.org/10.4271/980062
  4. Banker, N. D., Dutta, P., Prasad, M., & Srinivasan, K. (2008). Performance studies on mechanical+adsorption hybrid compression refrigeration cycles with HFC 134a. International Journal of Refrigeration, 31(8), 1398–1406. https://doi.org/10.1016/j.ijrefrig.2008.03.009
  5. Dakkama, H. J., Elsayed, A., Al-Dadah, R. K., Mahmoud, S. M., & Youssef, P. (2015). Investigation of Cascading Adsorption Refrigeration System with Integrated Evaporator-Condenser Heat Exchanger Using Different Working Pairs. Energy Procedia, 75, 1496–1501. https://doi.org/10.1016/j.egypro.2015.07.285
  6. Habib, K., Saha, B. B., Rahman, K. A., Chakraborty, A., Koyama, S., & Ng, K. C. (2010). Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs. International Journal of Refrigeration, 33(4), 706–713. https://doi.org/10.1016/j.ijrefrig.2010.01.006
  7. Johnson, V. H. (2002, June). Heat-Generated Cooling Opportunities in Vehicles. https://doi.org/10.4271/2002-01-1969Jribi, S., Saha, B. B., Koyama, S., Chakraborty, A., & Ng, K. C. (2013). Study on activated carbon/HFO-1234ze(E) based adsorption cooling cycle. Applied Thermal Engineering, 50(2), 1570–1575. https://doi.org/10.1016/j.applthermaleng.2011.11.066
  8. Kilic, M., & Anjrini, M. (2020). Comparative performance analysis of a combined cooling system with mechanical and adsorption cycles. Energy Conversion and Management, 221, 113208. https://doi.org/10.1016/j.enconman.2020.113208
  9. Kılıç, M., & Gönül, E. (2018). An Experimental Study on Adsorption Characteristics of R134a and R404a Onto Granular and Pellet-Type Activated Carbon. In Exergetic, Energetic and Environmental Dimensions (pp. 751–761). Elsevier. https://doi.org/10.1016/B978-0-12-813734-5.00042-1
  10. Kojok, F., Fardoun, F., Younes, R., & Outbib, R. (2016). Hybrid cooling systems: A review and an optimized selection scheme. Renewable and Sustainable Energy Reviews, 65, 57–80. https://doi.org/10.1016/j.rser.2016.06.092
  11. Li, G., Eisele, M., Lee, H., Hwang, Y., & Radermacher, R. (2014). Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants. Energy, 68, 819–831. https://doi.org/10.1016/j.energy.2014.01.018
  12. Li, X. H., Hou, X. H., Zhang, X., & Yuan, Z. X. (2015). A review on development of adsorption cooling -Novel beds and advanced cycles. Energy Conversion and Management, 94, 221–232. https://doi.org/10.1016/j.enconman.2015.01.076
  13. Ojha, M. K., Shukla, A. K., Verma, P., & Kannojiya, R. (2021). Recent progress and outlook of solar adsorption refrigeration systems. Materials Today:Proceedings, 46, 5639–5646. https://doi.org/10.1016/j.matpr.2020.09.593
  14. Pinto, S. P., Karanam, P., Raghavendra, B. G., Boopathi, V., Mathad, P., Behera, U., & Kasthurirengan, S. (2019). Development and studies of low capacity adsorption refrigeration systems based on silica gel-water and activated carbon-R134a pairs. Heat and Mass Transfer, 55(2), 513–531. https://doi.org/10.1007/s00231-018-2441-0
  15. Shabir, F., Sultan, M., Miyazaki, T., Saha, B. B., Askalany, A., Ali, I., Zhou, Y., Ahmad, R., & Shamshiri, R. R. (2020). Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renewable and Sustainable Energy Reviews, 119, 109630. https://doi.org/10.1016/j.rser.2019.109630
  16. Sharafian, A., & Bahrami, M. (2014). Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration. Renewable and Sustainable Energy Reviews, 30, 440–451. https://doi.org/10.1016/j.rser.2013.10.031
  17. Shmroukh, A. N., Hamza, A., Ali, H., Abel-Rahman, A. K., & Ookwara, S. (2015). Experimental Investigation on Adsorption Capacity of a Variety of Activated Carbon/Refrigerant Pairs. In Journal of Engineering Research and Applications www.ijera.com (Vol. 5, pp. 66–76). www.ijera.com
  18. Sultan, M., El-Sharkawy, I. I., Miyazaki, T., Saha, B. B., & Koyama, S. (2015). An overview of solid desiccant dehumidification and air conditioning systems. Renewable and Sustainable Energy Reviews, 46, 16–29. https://doi.org/10.1016/j.rser.2015.02.038
  19. Tiwari, H., & Parishwad, G. V. (2012). Adsorption Refrigeration System for Cabin Cooling of Trucks (Vol. 2, Issue 10). www.ijetae.com
  20. Venkataraman, V., El-Kharouf, A., Pandya, B., Amakiri, E., & Steinberger-Wilckens, R. (2020). Coupling of engine exhaust and fuel cell exhaust with vapour absorption refrigeration/air conditioning systems for transport applications: A review. Thermal Science and Engineering Progress, 18, 100550. https://doi.org/10.1016/j.tsep.2020.100550
  21. Verde, M., Harby, K., de Boer, R., & Corberán, J. M. (2016). Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I –Modeling and experimental validation. Energy, 116, 526–538. https://doi.org/10.1016/j.energy.2016.09.113
  22. Waghchore, R. K., Jumde, M. R., & Somwanshi, A. H. (2013). INDIA. b,c Final year Mechanical Engineering Department. International Journal of Engineering Trends and Technology, 445001. http://www.ijettjournal.org
  23. Wang, L. W., Wang, R. Z., & Oliveira, R. G. (2009). A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews, 13(3), 518–534. https://doi.org/10.1016/j.rser.2007.12.002
  24. Wang, R., Wang, L., & Wu, J. (2014). Adsorption Refrigeration Technology: Theory and Application. Wiley Publication.
  25. Yeo, T. H. C., Tan, I. A. W., & Abdullah, M. O. (2012). Development of adsorption air-conditioning technology using modified activated carbon -A review. Renewable and Sustainable Energy Reviews, 16(5), 3355–3363. https://doi.org/10.1016/j.rser.2012.02.073
  26. Zeng, T., Huang, H., Kobayashi, N., & Li, J. (2017). Performance of an Activated Carbon-Ammonia Adsorption Refrigeration System. Natural Resources, 08(10), 611–631. https://doi.org/10.4236/nr.2017.810039 R.E. & Zadeh, L.A. (1970). Decision-making in a fuzzy environment, Management Science, 17(4), 141-164.
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing