AccScience Publishing / IJOSI / Volume 8 / Issue 2 / DOI: 10.6977/IJoSI.202406_8(2).0008
ARTICLE

A novel hybrid deep belief Google network framework for brain tumor classification

Sanjeet Kumar1* Urmila Pilania1 Rajni Bala2
Show Less
1 Department of Computer Science and TechnologyManav Rachna UniversityFaridabad, Haryana-121004, India
2 Department of Computer ScienceDeen Dayal Upadhyaya College, University of DelhiSector-3, Dwarka, New Delhi-110078, India
Submitted: 23 January 2024 | Revised: 27 March 2024 | Accepted: 15 April 2024 | Published: 1 June 2024
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

A brain tumor can lead to headaches, seizures, numbness or weakness in the arms or legs, changes in personality or behavior, nausea, vomiting, visual or hearing disturbances, or dizziness. Brain tumors are lumps or atypical expansions of cells that developin the brain or central spinal canal. The current study used neural networks to identify with categorize brain tumors, although it has the drawbacks of longer delays in processing, overfitting, and exploding gradient. This study proposed a unique Hybrid Deep Belief Google Network (DBGN) system for brain tumor identi-fication and categorization in order to get over the constraints. Pre-processing and feature extraction with categoriza-tion are the components of this method. Utilizing the proposed Modified Global Contrast Stretching (MGCS), Hybrid Median and Wiener Filter (HMWF), and Modified Scharr operator to first pre-process the obtained pictures. Next, a fresh, efficient neural network was proposed by this study to gather and classify the brain tumor. As aresult, the method we propose outperforms the existing approaches in relation to accuracy, precision, recall, and specificity.

Keywords
Brain tumor
Medical imaging
Magnetic Resonance Imaging (MRI)
tumor classification
deep learn-ing
neural network.
References
  1. Acharya, M., Alsadoon, A., Al-Janabi, S., Prasad, P. W. C., Dawoud, A., Alsadoon, G., & Paul, M. (2020, November). MRI-based diagnosis of brain tumours using a deep neural network framework. In *2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)* (pp. 1-5). IEEE.
  2. Amin, J., Sharif, M., Yasmin, M., & Fernandes, S. L. (2020). A distinctive approach in brain tumor detection and classification using MRI. *Pattern Recognition Letters*, 139, 118-127.
  3. Archana, K. V., & Komarasamy, G. (2023). A novel deep learning-based brain tumor detection using the Bagging ensemble with K-nearest neighbor. *Journal of Intelligent Systems*, 32(1).
  4. Asad, R., Rehman, S. U., Imran, A., Li, J., Al-muhaimeed, A., & Alzahrani, A. (2023). Computer-Aided Early Melanoma Brain-Tumor Detection Using Deep-Learning Approach. *Biomedicines*, 11(1), 184.
  5. Babu, P. A., Rao, B. S., Reddy, Y. V. B., Kumar, G. R., Rao, J. N., Koduru, S. K. R., & Kumar, G. S. (2023). Optimized CNN-based Brain Tumor Segmentation and Classification using Artificial Bee Colony and Thresholding. *International Journal of Computers Communications & Control*, 18(1).
  6. Chen, B., Zhang, L., Chen, H., Liang, K., & Chen, X. (2021). A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors. *Computer Methods and Programs in Biomedicine*, 200, 105797.
  7. Fernandes, S. L., Tanik, U. J., Rajinikanth, V., & Karthik, K. A. (2020). A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. *Neural Computing and Applications*, 32, 15897-15908.
  8. Gore, D. V., & Deshpande, V. (2020, June). Comparative study of various techniques using deep learning for brain tumor detection. In *2020 International Conference for Emerging Technology (INCET)* (pp. 1-4). IEEE.
  9. Irmak, E. (2021). Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework. *Iranian Journal of Science and Technology, Transactions of Electrical Engineering*, 45(3), 1015-1036.
  10. Jun, W., & Liyuan, Z. (2022). Brain Tumor Classification Based on Attention Guided Deep Learning Model. *International Journal of Computational Intelligence Systems*, 15(1), 35.
  11. Kabir, M. A. (2020, June). Early stage brain tumor detection on MRI image using a hybrid technique. In *2020 IEEE Region 10 Symposium (TENSYMP)* (pp. 1828-1831). IEEE.
  12. Khan, M. A., Akram, T., Sharif, M., Saba, T., Javed, K., Lali, I. U., & Rehman, A. (2019). Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. *Microscopy Research and Technique*, 82(6), 741-763.
  13. Kujur, A., Raza, Z., Khan, A. A., & Wechtaisong, C. (2022). Data Complexity Based Evaluation of the Model Dependence of Brain MRI Images for Classification of Brain Tumor and Alzheimer’s Disease. *IEEE Access*, 10, 112117-112133.
  14. Kumaar, M. A., Samiayya, D., Venkatesan Rajinikanth, P. M., & Kadry, S. Brain Tumor Classification Using a Pre-Trained Auxiliary Classifying Style-Based Generative Adversarial Network.
  15. Kumar, S., Pilania, U., & Nandal, N. (2023). A systematic study of artificial intelligence-based methods for detecting brain tumors. *Информатика и автоматизация*, 22(3), 541-575.
  16. Kurdi, S. Z., Ali, M. H., Jaber, M. M., Saba, T., Rehman, A., & Damaševičius, R. (2023). Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional Neural Networks. *Journal of Personalized Medicine*, 13(2), 181.
  17. Li, J., Han, Y., Zhang, M., Li, G., & Zhang, B. (2022). Multi-scale residual network model combined with Global Average Pooling for action recognition. *Multimedia Tools and Applications*, 1-19.
  18. Majib, M. S., Rahman, M. M., Sazzad, T. S., Khan, N. I., & Dey, S. K. (2021). Vgg-scnet: A vgg net-based deep learning framework for brain tumor detection on MRI images. *IEEE Access*, 9, 116942-116952.
  19. Malla, P. P., Sahu, S., & Alutaibi, A. I. (2023). Classification of Tumor in Brain MR Images Using Deep Convolutional Neural Network and Global Average Pooling. *Processes*, 11(3), 679.
  20. Masood, M., Nazir, T., Nawaz, M., Mehmood, A., Rashid, J., Kwon, H. Y., & Hussain, A. (2021). A novel deep learning method for recognition and classification of brain tumors from MRI images. *Diagnostics*, 11(5), 744.
  21. Mishra, P. K., Satapathy, S. C., & Rout, M. (2021). Segmentation of MRI brain tumor image using optimization based deep convolutional neural networks (DCNN). *Open Computer Science*, 11(1), 380-390.
  22. Mishra, S. K., & Deepthi, V. H. (2021). Retracted article: Brain image classification by the combination of different wavelet transforms and support vector machine classification. *Journal of Ambient Intelligence and Humanized Computing*, 12(6), 6741-6749.
  23. Nawaz, S. A., Khan, D. M., & Qadri, S. (2022). Brain tumor classification based on hybrid optimized multi-features analysis using magnetic resonance imaging dataset. *Applied Artificial Intelligence*, 36(1), 2031824.
  24. Özkaraca, O., Bağrıaçık, O. İ., Gürüler, H., Khan, F., Hussain, J., Khan, J., & Laila, U. E. (2023). Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images. *Life*, 13(2), 349.
  25. Patil, S., & Kirange, D. (2023). Ensemble of Deep Learning Models for Brain Tumor Detection. *Procedia Computer Science*, 218, 2468-2479.
  26. Rammurthy, D., & Mahesh, P. K. (2022). Whale Har-ris hawksoptimization based deep learning classi-fier for brain tumor detection using MRI im-ages,Journal  of King Saud University-Computer and Information Sciences,34(6), 3259-3272.
  27. Rammurthy, D., & Mahesh, P. K. (2022). Whale Har-ris hawks optimization based deep learning classi-fier  for  brain  tumor  detection  using  MRI  im-ages,Journal  of  King  Saud  University-Computer and Information Sciences,34(6), 3259-3272.
  28. Razzaq, S., Mubeen, N., Kiran, U., Asghar, M. A., & Fawad, F. (2020, October). Brain tumor detection from  mri  images  using  bag  of  features  and  deep neural network, In2020 International Symposium on  Recent  Advances  in  Electrical  Engineering  & Computer Sciences (RAEE & CS), 5, 1-6. IEEE.
  29. Saeedi, S., Rezayi, S., Keshavarz, H., & R Niakan Kal-hori,  S.  (2023).  MRI-based  brain  tumor detection using  convolutional  deep  learning  methods  and chosen machine  learning techniques,BMC Medi-cal Informatics and Decision Making,23(1), 1-17.
  30. Sharif, M. I., Li, J. P., Khan, M. A., & Saleem, M. A. (2020). Active deep neural network features selec-tion for segmentation and recognition of brain tu-mors using MRI images,Pattern Recognition Let-ters,129, 181-189.
  31. Sharif, M., Amin, J., Raza, M., Yasmin, M., & Satapa-thy, S. C. (2020). An integrated design of particle swarm optimization (PSO) with fusion of features for  detection  of  brain  tumor,Pattern  Recognition Letters,129, 150-157.
  32. Solanki,  S.,  Singh,  U.  P.,  Chouhan,  S.  S.,  &  Jain,  S. (2023). Brain Tumor Detection and Classification by  using  Deep  Learning Classifier,International Journal of Intelligent Systems and Applications in Engineering,11(2s), 279-292.
  33. Sravan,  V.,  Swaraja,  K.,  Meenakshi,  K.,  Kora,  P.,  & Samson, M. (2020, June). Magnetic resonance im-ages based brain tumor segmentation-a critical sur-vey, In2020 4th international conference on trends in  electronics  and  informatics  (ICOEI)(48184), 1063-1068, IEEE.
  34. Toğaçar, M., Ergen, B., & Cömert, Z. (2021). Tumor type  detection  in  brain  MR  images  of  the  deep model  developed  using  hypercolumn  technique, attention modules, and residual blocks,Medical & Biological  Engineering  &  Computing,59(1),  57-70.
  35. Yin, B., Wang, C., & Abza, F. (2020). New brain tu-mor  classification  method  based  on  an  improved version of whale optimization algorithm,Biomed-ical Signal Processing and Control,56, 101728.
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing