Revolutionizingage and gender recognition: anenhanced CNN ar-chitecture

The recognition of age and gender in images has had a significant impact on computer vision, particularly with the increasing application of digital platforms. Deep Convolutional Neural Networks (DCNNs) show promising perfor-mance. However, they demand substantial computational resources, limiting their deployment in real systems, espe-cially those with constraints on resources or cost. This study performs a sensitivity analysis in order to show how some changes in the architecture of the network can influence the tradeoff between accuracy and performance. For that, in this work, we have investigated various CNN architectures and introduced an effective convolutional neural network (CNN) model to precisely predict gender and age attributes using the Adience dataset. Amidst unfiltered and diverse image sources from various devices, our model exhibits an impressive 92.24% accuracy across eight distinct age groups and two gender categories. The model's strength lies in its adeptness at handling intricate image data, allowing comprehensive adjustmentsto age and gender parameters. By employing advanced deep learning techniques and comparing with MiniVGGNet, our model showcases exceptional performance.
- Abir, I. M., Zaki, H. F. M., & Ibrahim, A. M. (2023). Evaluation of simultaneous identity, age and gender recognition for crowd face monitoring. ASEAN Engineering Journal, 13(1), 11-20. https://doi.org/10.11113/aej.v13.17612
- Abood, Q. K. (2023). Predicting Age and Gender Using AlexNet. TEM Journal, 12(1).
- Agbo-Ajala, O., & Viriri, S. (2020). Deeply Learned Classifiers for Age and Gender Predictions of Unfiltered Faces. *The Scientific World Journal*, 2020.
- Balan, H., Alrasheedi, A. F., Askar, S. S., & Abouhawwash, M. (2022). An Intelligent Human Age and Gender Forecasting Framework Using Deep Learning Algorithms. *Applied Artificial Intelligence*, 36(1), 2073724.
- Benkaddour, M. K. (2021b). CNN-Based Feature Extraction for Age Estimation and Gender Classification. *Informatica*, 45(5).
- Benkaddour, M. K., Lahlali, S., & Trabelsi, M. (2021a). Human Age and Gender Classification Using Convolutional Neural Network. In *2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-Being (IHSH)* (pp. 215-220). IEEE.
- Cao, L., Dikmen, M., Fu, Y., & Huang, T. S. (2008, October). Gender Recognition from Body. In *Proceedings of the 16th ACM International Conference on Multimedia* (pp. 725-728).
- Dehghan, A., Ortiz, E. G., Shu, G., & Masood, S. Z. (2017). DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network. *arXiv preprint arXiv:1702.04280*.
- Deng, Y., Luo, P., Loy, C. C., & Tang, X. (2014, November). Pedestrian Attribute Recognition at Far Distance. In *Proceedings of the 22nd ACM International Conference on Multimedia* (pp. 789-792).
- Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. *Journal of Machine Learning Research*, 12(7).
- Eidinger, E., Enbar, R., & Hassner, T. (2014). Age and Gender Estimation of Unfiltered Faces. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1681-1688).
- Garain, A., Ray, B., Singh, P. K., Ahmadian, A., Senu, N., & Sarkar, R. (2021). GRA_Net: A Deep Learning Model for Classification of Age and Gender from Facial Images. *IEEE Access*, 9, 85672-85689.
- Greco, A., Saggese, A., Vento, M., & Vigilante, V. (2020). A Convolutional Neural Network for Gender Recognition Optimizing the Accuracy/Speed Tradeoff. *IEEE Access*, 8, 130771-130781.
- Hassan, K. R., & Ali, I. H. (2020, November). Age and Gender Classification Using Multiple Convolutional Neural Networks. In *IOP Conference Series: Materials Science and Engineering* (Vol. 928, No. 3, p. 032039). IOP Publishing.
- Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. *arXiv preprint arXiv:1412.6980*.
- Kurnianggoro, L., & Jo, K. H. (2017). Identification of Pedestrian Attributes Using Deep Network. In *IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society* (pp. 8503-8507). IEEE.
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. *Nature*, 521(7553), 436-444.
- Levi, G., & Hassner, T. (2015). Age and Gender Classification Using Convolutional Neural Networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops* (pp. 34-42).
- Liu, Q., & Chen, L. (2020). Advancements in Age and Gender Classification Using Convolutional Neural Networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(6), 789-802.
- Mamatkulovich, B. B., & Alijon o’g’li, H. A. (2023). Facial Image-Based Gender and Age Estimation. *Eurasian Scientific Herald*, 18, 47-50.
- Nada, A. A., Alajrami, E., Al-Saqqa, A. A., & Abu-Naser, S. S. (2020). Age and Gender Prediction and Validation Through Single User Images Using CNN. *Int. J. Acad. Eng. Res.(IJAER)*, 4, 21-24.
- Ng, C. B., Tay, Y. H., & Goi, B. M. (2013). A Convolutional Neural Network for Pedestrian Gender Recognition. In *Advances in Neural Networks–ISNN 2013: 10th International Symposium on Neural Networks, Dalian, China, July 4-6, 2013, Proceedings, Part I 10* (pp. 558-564). Springer Berlin Heidelberg.
- Ozbulak, G., Aytar, Y., & Ekenel, H. K. (2016). How Transferable Are CNN-Based Features for Age and Gender Classification?. In *2016 International Conference of the Biometrics Special Interest Group (BIOSIG)* (pp. 1-6). IEEE.
- Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. *British Machine Vision Conference (BMVC)*.
- Patil, J. (2021). Age and Gender Detection Using CNN. *International Journal of Scientific Research in Science and Technology*, 8(3), 29-33.
- Pranav, K. B., & Manikandan, J. (2020). Design and Evaluation of a Real-Time Face Recognition System Using Convolutional Neural Networks. *Procedia Computer Science*, 171, 1651-1659.
- Ranjan, R., Sankaranarayanan, S., Castillo, C. D., & Chellappa, R. (2017, May). An All-in-One Convolutional Neural Network for Face Analysis. In *2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)* (pp. 17-24). IEEE.
- Raza, M., Zonghai, C., Rehman, S. U., Zhenhua, G., Jikai, W., & Peng, B. (2017). Part-Wise Pedestrian Gender Recognition via Deep Convolutional Neural Networks. *2nd IET International Conference on Biomedical Image and Signal Processing (ICBISP 2017)*.
- Rothe, R., Timofte, R., & Van Gool, L. (2016). DEX: Deep EXpectation of Apparent Age from a Single Image. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, 10-15.
- Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms. *arXiv preprint arXiv:1609.04747*.
- Sharma, N., Sharma, R., & Jindal, N. (2022). Face-Based Age and Gender Estimation Using Improved Convolutional Neural Network Approach. *Wireless Personal Communications*, 124(4), 3035-3054.
- Smith, J., & Johnson, A. (2021). Facial Attribute Recognition Using Deep Convolutional Neural Networks: A Comprehensive Review. *Journal of Artificial Intelligence*, 15(3), 211-225.
- Srivastava, D. K., Gupta, E., Shrivastav, S., & Sharma, R. (2023). Detection of Age and Gender from Facial Images Using CNN. In *Proceedings of 3rd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2022* (pp. 481-491). Singapore: Springer Nature Singapore.
- Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep Learning Face Representation by Joint Identification-Verification. *Advances in Neural Information Processing Systems*, 27.
- Sun, Y., Wang, X., & Tang, X. (2014). Deep Learning Face Representation from Predicting 10,000 Classes. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1891-1898).
- Toshev, A., & Szegedy, C. (2014). Deeppose: Human Pose Estimation via Deep Neural Networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 1653-1660).
- Yang, J., et al. (2018). Predicting Human Age by Combining Deep Learning and High-Order Functional Networks. *IEEE Transactions on Image Processing*, 27(9), 4572-4583.
- Zhang, K., Gao, C., Guo, L., Sun, M., Yuan, X., Han, T. X., ... & Li, B. (2017). Age Group and Gender Estimation in the Wild with Deep RoR Architecture. *IEEE Access*, 5, 22492-22503.