AccScience Publishing / IJOSI / Volume 8 / Issue 4 / DOI: 10.6977/IJoSI.202412_8(4).0004
ARTICLE

Analysis of deep actor-critic methods for classifying cancer subtypes through gene expression

Jayakrishnan R1 S. Meera2*
Show Less
1 Department of Computer Science and EngineeringVels Institute of Science, Technology and Advanced StudiesChennai, Tamil Nadu
2 Department of Computer Science and EngineeringVels Institute of Science, Technology and Advanced StudiesChennai, Tamil Nadu
Submitted: 23 February 2024 | Revised: 1 July 2024 | Accepted: 3 September 2024 | Published: 30 December 2024
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The word "cancer" denotes a syndromes that can spread to various bodily areas and are brought on by abnormal cell proliferation. After cardiovascular illnesses, according to the World Health Organisation (WHO), cancer is the second largest cause of death in the world. To better understand molecular processes behind various cancer subdivisions, cancer categorization depends on gene expression information is essential. Conventional machine learning methods have proven helpful in this situation, but new approaches are needed for accurate and under-standable categorisation due to the difficulty and dimensionality of gene expression datasets. In this article, we analysevariousmethods for multiclass categorising cancer subtypes usingdeep structured reinforcement learn-ing (DSRL). Our methodology addresses several significant issues in cancer subtype classification by combin-ing the strength of deep neural networks with reinforcement learning. In this research, seven different gene expression datasets are utilised to classify the cancer subtype. We also used different classification approaches in Python for the same dataset to perform a comparative study. Deep reinforcement learning for cancer subtype classification improves the accuracy of gene expression data by integrating intricate data patterns, enabling customised therapies, and expanding the field of precision medicine research. The analysis reveals that the newly suggested model exceeds the contemporary state-of-the-art classifiers, achieving the highest accuracy across all seven datasets, ranging from 55% to 100%, while attaining the lowest loss, which varies between 0.02 and 0.11. This work offers a viable method for classifying cancer subtypes into many categories using gene expression data.

Keywords
Cancer subtypes
Machine-learning
Deep-learning
Reinforcement learning
Gene expression
Deep neural networks.
References
  1. Abd-Elnaby, M., Alfonse, M., & Roushdy, M. (2021). Classification of Breast Cancer Using Microarray Gene Expression Data: A Survey. *Journal of Biomedical Informatics*, 117, 103764.
  2. Alimirzaei, F., & Kieslich, C. A. (2023). Machine Learning Models for Predicting Membranolytic Anticancer Peptides. *Computer Aided Chemical Engineering*, 52, 2691-2696.
  3. Anna, A., & Monika, G. (2018). Splicing Mutations in Human Genetic Disorders: Examples, Detection, and Confirmation. *Journal of Applied Genetics*, 59, 253–268.
  4. Ashtari, P., Haredasht, F. N., & Beigy, H. (2020). Supervised Fuzzy Partitioning. *Pattern Recognition*, 97, 107013.
  5. Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P., & Munos, R. (2016). Increasing the Action Gap: New Operators for Reinforcement Learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 30(1).
  6. Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-Parameter Optimization. *Advances in Neural Information Processing Systems*, 24.
  7. Bhandari, N., Walambe, R., Kotecha, K., & Khare, S. P. (2022). A Comprehensive Survey on Computational Learning Methods for Analysis of Gene Expression Data. *Frontiers in Molecular Biosciences*, 9, 907150.
  8. Bhonde, S.B., & Prasad, J.R. (2021). Deep Learning Techniques in Cancer Prediction Using Genomic Profiles. In *Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT)*, Maharashtra, India, 1–9.
  9. Brewczyński, A., Jabłońska, B., Mazurek, A. M., Mrochem-Kwarciak, J., Mrowiec, S., Śnietura, M., Kentnowski, M., Kołosza, Z., Składowski, K., & Rutkowski, T. (2021). Comparison of Selected Immune and Hematological Parameters and Their Impact on Survival in Patients with HPV-Related and HPV-Unrelated Oropharyngeal Cancer. *Cancers*, 13, 3256.
  10. Celesti, F., Celesti, A., Wan, J., & Villari, M. (2018). Why Deep Learning Is Changing the Way to Approach NGS Data Processing: A Review. *IEEE Reviews in Biomedical Engineering*, 11, 68–76.
  11. Chabon, J. J., Hamilton, E. G., Kurtz, D. M., Esfahani, M. S., Moding, E. J., Stehr, H., & Diehn, M. (2020). Integrating Genomic Features for Non-Invasive Early Lung Cancer Detection. *Nature*, 580(7802), 245-251.
  12. Crosby, D., Bhatia, S., Brindle, K. M., Coussens, L. M., Dive, C., Emberton, M., & Balasubramanian, S. (2022). Early Detection of Cancer. *Science*, 375(6586), eaay9040.
  13. Cun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. *Nature*, 521, 436-444.
  14. De Souto, M. C., Costa, I. G., de Araujo, D. S., Ludemir, T. B., & Schliep, A. (2008). Clustering Cancer Gene Expression Data: A Comparative Study. *BMC Bioinformatics*, 9(1), 1-14.
  15. Divate, M., Tyagi, A., Richard, D. J., Prasad, P. A., Gowda, H., & Nagaraj, S. H. (2022). Deep Learning-Based Pan-Cancer Classification Model Reveals Tissue-of-Origin Specific Gene Expression Signatures. *Cancers*, 14(5), 1185.
  16. Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data. *Journal of the American Statistical Association*, 97(457).
  17. Goodarzi, K., Lane, R., & Rao, S. S. (2024). Varying the RGD Concentration on a Hyaluronic Acid Hydrogel Influences Dormancy Versus Proliferation in Brain Metastatic Breast Cancer Cells. *Journal of Biomedical Materials Research Part A*, 112(5), 710-720.
  18. Hassani, H., Avazzadeh, Z., Agarwal, P., Mehrabi, S., Ebadi, M. J., Dahaghin, M. S., & Naraghirad, E. (2023). A Study on Fractional Tumor-Immune Interaction Model Related to Lung Cancer via Generalized Laguerre Polynomials. *BMC Medical Research Methodology*, 23(1), 189.
  19. Hausknecht, M., & Stone, P. (2015). Deep Recurrent Q-Learning for Partially Observable MDPs. In *2015 AAAI Fall Symposium Series*.
  20. Heydarpoor, F., Karbassi, S. M., Bidabadi, N., & Ebadi, M. J. (2020). Solving Multi-Objective Functions for Cancer Treatment by Using Metaheuristic Algorithms. *International Journal of Combinatorial Optimization Problems & Informatics*, 11(3).
  21. Hijazi, H., & Chan, C. (2013). A Classification Framework Applied to Cancer Gene Expression Profiles. *Journal of Healthcare Engineering*, 4, 255-283.
  22. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-Excitation Networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 7132-7141.
  23. Islam, M. M., Huang, S., Ajwad, R., Chi, C., Wang, Y., & Hu, P. (2020). An Integrative Deep Learning Framework for Classifying Molecular Subtypes of Breast Cancer. *Computational and Structural Biotechnology Journal*, 18, 2185-2199.
  24. Jayakrishnan, R., & Meera, S. (2023). Reinforcement Learning Technique Based Automated Feature Analysis of Gene Expression Data. In *2023 International Conference on Circuit Power and Computing Technologies (ICCPCT)*, 1855-1860.
  25. Jayakrishnan, R., & Sridevi, S. (2022). A Comparative Study of Gene Expression Data-Based Intelligent Methods for Cancer Subtype Detection. In *IOT with Smart Systems: Proceedings of ICTIS 2022*, 2, 457-467.
  26. Jayashri, N., & Deepika, M. Enhanced Artificial Bee Colony Based Flexible Neural Forest (EABC-FNT) and Ensemble Gene Selection (EGS) for Cancer Subtypes Classification on Gene Expression Data.
  27. Jenul, A., Stokmo, H. L., Schrunner, S., Hjortland, G. O., Revheim, M. E., & Tomic, O. (2024). Novel Ensemble Feature Selection Techniques Applied to High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms for the Prediction of Survival. *Computer Methods and Programs in Biomedicine*, 244, 107934.
  28. Karim, M. R., Beyan, O., Zappa, A., Costa, I. G., Rebholz-Schuhmann, D., Cochez, M., & Decker, S. (2021). Deep Learning-Based Clustering Approaches for Bioinformatics. *Briefings in Bioinformatics*, 22(1), 393-415.
  29. Khan, M. F., Ghazal, T. M., Said, R. A., Fatima, A., Abbas, S., Khan, M. A., Issa, G. F., Ahmad, M., & Khan, M. A. (2021). An IoMT-Enabled Smart Healthcare Model to Monitor Elderly People Using Machine Learning Technique. *Computational Intelligence and Neuroscience*, 2021, 2487759.
  30. Khorshed, T., Moustafa, M. N., & Rafea, A. (2020). Deep learning for multi-tissue cancer classification of gene expressions (GeneXNet),IEEE Access,8, 90615-90629.
  31. Korbar, B., Olofson, A. M., Miraflor, A. P., Nicka, C. M., Suriawinata, M. A., Torresani, L., & Hassanpour, S. (2017). Deep Learning for Classification of Colorectal Polyps on Whole-Slide Images. *Journal of Pathology Informatics*, 8(1), 30.
  32. Le, N., Rathour, V. S., Yamazaki, K., Luu, K., & Savvides, M. (2022). Deep Reinforcement Learning in Computer Vision: A Comprehensive Survey. *Artificial Intelligence Review*, 1-87.
  33. Lunshof, J. E., Bobe, J., Aach, J., Angrist, M., Thakuria, J. V., Vorhaus, D. B., Hoehe, M. R., & Church, G. M. (2010). Personal Genomes in Progress: From the Human Genome Project to the Personal Genome Project. *Dialogues in Clinical Neuroscience*, 12, 47-60.
  34. Miller, K. D., Ortiz, A. P., Pinheiro, P. S., Bandi, P., Minihan, A., Fuchs, H. E., Martinez Tyson, D., Tortolero-Luna, G., Fedewa, S. A., Jemal, A. M., et al. (2021). Cancer Statistics for the US Hispanic/Latino Population. *CA: A Cancer Journal for Clinicians*, 71, 466-487.
  35. Min, S., Lee, B., & Yoon, S. (2017). Deep Learning in Bioinformatics. *Briefings in Bioinformatics*, 18(5), 851-869.
  36. Mostavi, M., Chiu, Y. C., Huang, Y., & Chen, Y. (2020). Convolutional Neural Network Models for Cancer Type Prediction Based on Gene Expression. *BMC Medical Genomics*, 13, 1-13.
  37. Munkácsy, G., Santarpia, L., & Győrffy, B. (2022). Gene Expression Profiling in Early Breast Cancer Patient Stratification Based on Molecular and Tumor Microenvironment Features. *Biomedicines*, 10, 248.
  38. Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., & Biswas, R. (2018). Opportunities and Challenges for Quantum-Assisted Machine Learning in Near-Term Quantum Computers. *Quantum Science and Technology*, 3(3), 030502.
  39. Prathik, A., Vinodhini, M., Karthik, N., & Ebenezer, V. (2022). Prediction of Carcinoma Cancer Type Using Deep Reinforcement Learning Technique from Gene Expression Data. In *Intelligent Data Communication Technologies and Internet of Things: Proceedings of ICICI 2021*, 541-552.
  40. Ram, M., Najafi, A., & Shakeri, M. T. (2017). Classification and Biomarker Gene Selection for Cancer Gene Expression Data Using Random Forest. *Iranian Journal of Pathology*, 12(4), 339.
  41. Rodriguez-Ezpeleta, N. (2012). *Bioinformatics for High Throughput Sequencing*. New York: Springer.
  42. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 4510-4520.
  43. Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized Experience Replay. arXiv preprint arXiv:1511.05952.
  44. Segal, N. H., Pavlidis, P., Noble, W. S., Antonescu, C. R., Viale, A., Wesley, U. V., & Houghton, A. N. (2003). Classification of Clear-Cell Sarcoma as a Subtype of Melanoma by Genomic Profiling. *Journal of Clinical Oncology*, 21(9), 1775-1781.
  45. Shah, S. H., Iqbal, M. J., Ahmad, I., Khan, S., & Rodrigues, J. J. (2020). Optimized Gene Selection and Classification of Cancer from Microarray Gene Expression Data Using Deep Learning. *Neural Computing and Applications*, 1-12.
  46. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., & Hassabis, D. (2016). Mastering the Game of Go with Deep Neural Networks and Tree Search. *Nature*, 529(7587), 484-489.
  47. Tabares-Soto, R., Orozco-Arias, S., Romero-Cano, V., Bucheli, V. S., Rodríguez-Sotelo, J. L., & Jiménez-Varón, C. F. (2020). A Comparative Study of Machine Learning and Deep Learning Algorithms to Classify Cancer Types Based on Microarray Gene Expression Data. *PeerJ Computer Science*, 6, e270.
  48. Tarca, A. L., Romero, R., & Draghici, S. (2006). Analysis of Microarray Experiments of Gene Expression Profiling. *Gene*, 195(2), 373-388.
  49. Van Seijen, H., & Sutton, R. (2013). Planning by Prioritized Sweeping with Small Backups. In *International Conference on Machine Learning*, 361-369.
  50. Xia, D., Alexander, A. K., Isbell, A., Zhang, S., Ou, J., & Liu, X. M. (2017). Establishing a Co-Culture System for *Clostridium cellulovorans* and *Clostridium aceticum* for High Efficiency Biomass Transformation. *J. Sci. Heal. Univ. Ala*, 14, 8-13.
  51. Xu, J., Wu, P., Chen, Y., Meng, Q., Dawood, H., & Dawood, H. (2019). A Hierarchical Integration Deep Flexible Neural Forest Framework for Cancer Subtype Classification by Integrating Multi-Omics Data. *BMC Bioinformatics*, 20(1), 1-11.
  52. Xu, J., Wu, P., Chen, Y., Meng, Q., Dawood, H., & Khan, M. M. (2019). A Novel Deep Flexible Neural Forest Model for Classification of Cancer Subtypes Based on Gene Expression Data. *IEEE Access*, 7, 22086-22095.
  53. Yuan, L. M., Sun, Y., & Huang, G. (2020). Using Class-Specific Feature Selection for Cancer Detection with Gene Expression Profile Data of Platelets. *Sensors*, 20(5), 1528.
  54. Yuan, L., Sun, Y., & Huang, G. (2020). Using Class-Specific Feature Selection for Cancer Detection with Gene Expression Profile Data of Platelets. *Sensors*, 20, 1528.
  55. Zahoor, J., & Zafar, K. (2020). Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization (ITO) Algorithm. *Genes*, 11(7), 819.
  56. Zhang, Y., Deng, Q., Liang, W., & Zou, X. (2018). An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. *BioMed Research International*, 2018.
  57. Zhu, W., Xie, L., Han, J., & Guo, X. (2020). The Application of Deep Learning in Cancer Prognosis Prediction. *Cancers*, 12(3), 603.
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing