AccScience Publishing / IJOSI / Volume 8 / Issue 4 / DOI: 10.6977/IJoSI.202412_8(4).0008
ARTICLE

Iris liveness detection for biometric access control system in smart home security using deep convolutional neural network.

Yash G. Waghmare1 Sudeep D. Thepade1*
Show Less
1 Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, India
Submitted: 4 March 2024 | Revised: 26 May 2024 | Accepted: 3 September 2024 | Published: 30 December 2024
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Biometric access control systems are essential for enhancing the security of smart homes. Among the various bio-metric modalities, iris recognition is a promising option due to its high accuracy and contactless nature. Nevertheless, presentation attacks, which try to trick the system using artificial or fake irises, may deceive iris recognition systems. To counter this threat, iris liveness detection (ILD) techniques are employed to distinguish between real and fake irises. In this paper, a novel and robust ILD method that combines handcrafted features and deep learning based features is proposed. The proposed method's performance is assessed across multiple machine learning classifiers and contrasted with existing ILD methods. The experimental results show that the proposed method achieves the lowest AverageClassification Error Rate (ACER) values of 1.1% and 0.3% on the IIIT-D and Clarkson 2015 datasets, respectively, demonstrating its effectiveness and robustness against different types of presentation attacks.

Keywords
ILD
Inception v3
Haralick
GLCM.
References
  1. Choudhary, M., Tiwari, V., & Venkanna, U. (2023). Identifying Discriminatory Feature Vectors for Fusion-Based Iris Liveness Detection. *J Ambient Intell Human Comput*, 14, 10605–10616. https://doi.org/10.1007/s12652-022-03712-4
  2. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural Features for Image Classification. *IEEE Transactions on Systems, Man, and Cybernetics*, (6), 610-621.
  3. Impedovo, D., Dentamaro, V., Abbattista, G., Gattulli, V., & Pirlo, G. (2021). A Comparative Study of Shallow Learning and Deep Transfer Learning Techniques for Accurate Fingerprints Vitality Detection. *Pattern Recognition Letters*, 151, 11-18.
  4. Ishengoma, F. R. (2014). Authentication System for Smart Homes Based on ARM7TDMI-S and IRIS-Fingerprint Recognition Technologies. *arXiv pre-print arXiv:1410.0534*.
  5. Kaur, B. (2024). Fingerprint and Iris Liveness Detection Using Invariant Feature-Set. *Multimed Tools Appl*. https://doi.org/10.1007/s11042-023-17854-w
  6. Khade, Smita, Gite, Shilpa, & Pradhan, Biswajeet. (2022). Iris Liveness Detection Using Multiple Deep Convolution Networks. *Big Data and Cognitive Computing*, 6(2), 67. https://doi.org/10.3390/bdcc6020067
  7. Khade, S., Gite, S., Thepade, S. D., Pradhan, B., & Alamri, A. (2021a). Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-occurrence Matrix Features. *Sensors*, 21(21), 7408. https://doi.org/10.3390/s21217408
  8. Khade, S., Ahirrao, S., Phansalkar, S., Kotecha, K., Gite, S., & Thepade, S. D. (2021b). Iris Liveness Detection for Biometric Authentication: A Systematic Literature Review and Future Directions. *Inventions*, 6(4), 65.
  9. Kimura, G. Y., Lucio, D. R., Britto Jr, A. S., & Menotti, D. (2020). CNN Hyperparameter Tuning Applied to Iris Liveness Detection. *arXiv preprint arXiv:2003.00833*.
  10. Kohli, N., Yadav, D., Vatsa, M., & Singh, R. (2013). Revisiting Iris Recognition with Colour Cosmetic Contact Lenses. In *2013 International Conference on Biometrics (ICB)* (pp. 1-7). IEEE. https://doi.org/10.1109/icb.2013.6613021
  11. Wagh, L. R., & Thepade, S. D. (2024). Iris Liveness Detection Using Fusion of Thepade SBTC and Triangle Thresholding Features with Machine Learning Algorithms. *International Research Journal of Multidisciplinary Technovation (IRJMT)*, 6(1), 128-139. https://doi.org/10.54392/irjmt24110
  12. Li, D., Wu, C., & Wang, Y. (2021). A Novel Iris Texture Extraction Scheme for Iris Presentation Attack Detection. *Journal of Image and Graphics*, 9(3), 1-12.
  13. Peng, Z., Huang, W., Gu, S., Xie, L., Wang, Y., Jiao, J., & Ye, Q. (2021). Conformer: Local Features Coupling Global Representations for Visual Recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 367-376).
  14. Porebski, A., Vandenbroucke, N., & Macaire, L. (2008). Haralick Feature Extraction from LBP Images for Color Texture Classification. In *2008 First Workshops on Image Processing Theory, Tools and Applications* (pp. 1-8). IEEE.
  15. Shanmugapriya, D., Padmavathi, G., & Aysha, A. (2023). Detection of Iris Template Attacks Using Machine Learning and Deep Learning Methods. In *2023 10th International Conference on Computing for Sustainable Global Development (INDIACom)* (pp. 425-429). IEEE.
  16. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 2818-2826).
  17. Tapia, J. E., Gonzalez, S., & Busch, C. (2021). Iris Liveness Detection Using a Cascade of Dedicated Deep Learning Networks. *IEEE Transactions on Information Forensics and Security*, 17, 42-52.
  18. Toennies, K. D. (2024). Image Features: Extraction and Categories. In *An Introduction to Image Classification: From Designed Models to End-to-End Learning* (pp. 19-57). Singapore: Springer Nature Singapore.
  19. Verma, P., Selwal, A., & Sharma, D. (2023). IVIDNet: Intelligent Iris Vitality Detection via Weighted Prediction Score Level Fusion. *Multimedia Tools and Applications*, 1-23.
  20. Winston, J. J., Hemanth, D. J., Angelopoulou, A., & Kapetanios, E. (2022). Hybrid Deep Convolutional Neural Models for Iris Image Recognition. *Multimedia Tools and Applications*, 1-23.
  21. Yadav, D., Kohli, N., Agarwal, A., Vatsa, M., Singh, R., & Noore, A. (2018). Fusion of Handcrafted and Deep Learning Features for Large-Scale Multiple Iris Presentation Attack Detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops* (pp. 572-579).
  22. Yadav, D., Kohli, N., Doyle, J. S., Singh, R., Vatsa, M., & Bowyer, K. W. (2014). Unravelling the Effect of Textured Contact Lenses on Iris Recognition. *IEEE Transactions on Information Forensics and Security*, 9(5), 851-862. https://doi.org/10.1109/tifs.2014.2313025
  23. Yambay, D., Walczak, B., Schuckers, S., & Czajka, A. (2015). Livdet-Iris 2015 - Iris Liveness Detection Competition. In *Int. Conf. on Identity, Security and Behavior Analysis (ISBA), 2017* (pp. 1-6). https://doi.org/10.1109/isba.2017.7947701
  24. Yan, Z., He, L., Zhang, M., Sun, Z., & Tan, T. (2018). Hierarchical Multi-Class Iris Classification for Liveness Detection. In *2018 International Conference on Biometrics (ICB)* (pp. 47-53). IEEE.
  25. Zhou, S., Xu, C., Xu, R., Ding, W., Chen, C., & Xu, X. (2024). Image Recognition Model of Fraudulent Websites Based on Image Leader Decision and Inception-V3 Transfer Learning. *China Communications*, 21(1), 215-227.
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing