AccScience Publishing / IJOSI / Volume 8 / Issue 4 / DOI: 10.6977/IJoSI.202412_8(4).0009
ARTICLE

Exploring maritime movement information: an explainable AIap-proach using Hi-DBSCANand SHAPanalysis

Nitin Newaliya1 Vikas Siwach1* Harkesh Sehrawat1 Yudhvir Singh1
Show Less
1 Department of Computer Science & Engineering, UIET, Maharshi Dayanand University, Rohtak, Haryana, India
Submitted: 25 June 2024 | Revised: 1 September 2024 | Accepted: 18 October 2024 | Published: 30 December 2024
© 2024 by the Author(s). Licensee AccScience Publishing, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Maritime movement information is pivotal for several applications, including monitoring and examining vessel activities, ensuring efficient and secure navigation, logistics optimisation, and enhancing safety and environmental protection. The maritime industry relies on Automatic Identification System (AIS) data, which provides infor-mation on movement of vessels at sea. Determining meaningful and useful insights from this data is a challenge. The complexity and volume of the information make it difficult for traditional methods to provide in-depth insights and explanations. This paper presents an innovative Explainable AI (XAI) approach to explore maritime movement information using AIS data by leveraging high dimensional Density-Based Spatial Clustering of Applications with Noise (Hi-DBSCAN) algorithm and SHAP (SHapley Additive exPlanations) values in a novel way. Through ex-periments using real AIS datasets, the study reveals the efficacy of SHAP in determining the influence of AIS features on cluster formation. Results from two distinct AIS datasets demonstrate the efficacy of this method. This approach effectively unravels the ‘black box’ nature of clustering, providing maritime stakeholders with a clearer understanding of vessel behaviour patterns. For instance, in one dataset, the course of the vessel was identified as the most significant feature impacting clustering outcomes. Furthermore, the study explores SHAP's potential for anomaly detection by identifying data points with inconsistent feature influences. This study demonstrates that integrating Hi-DBSCAN clustering with SHAP analysis offers a transparent and interpretable method for under-standing vessel behaviour patterns from maritime movement information and extraction of meaningful insights. This framework provides maritime stakeholders with insights beyond traditional pattern recognition, with trans-parency and explainability, allowing for a deeper understanding and more informed and data-driven decisions in maritime operations.

Keywords
Data Analytics
DBSCAN
Explainable AI
AIS
SHAP.
References
  1. Abuella, M., Atoui, M. A., Nowaczyk, S., Johansson, S., & Faghani, E. (2023). Data-Driven Explainable Artificial Intelligence for Energy Efficiency in Short-Sea Shipping. In *Lecture Notes in Computer Science* (including subseries *Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*): Vol. 14175 LNAI. https://doi.org/10.1007/978-3-031-43430-3_14
  2. AccessAIS - MarineCadastre.gov. (n.d.). Retrieved November 26, 2023, from https://marinecadastre.gov/accessais/
  3. Alvarez-Garcia, M., Ibar-Alonso, R., & Arenas-Parra, M. (2024). A Comprehensive Framework for Explainable Cluster Analysis. *Information Sciences*, 663, 120282. https://doi.org/10.1016/J.INS.2024.120282
  4. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI. *Information Fusion*, 58, 82–115. https://doi.org/10.1016/J.INFFUS.2019.12.012
  5. Barredo-Arrieta, A., Lana, I., & Del Ser, J. (2019). What Lies Beneath: A Note on the Explainability of Black-box Machine Learning Models for Road Traffic Forecasting. *2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019*, 2232–2237. https://doi.org/10.1109/ITSC.2019.8916985
  6. Bobek, S., Kuk, M., Szelazek, M., & Nalepa, G. J. (2022). Enhancing Cluster Analysis With Explainable AI and Multidimensional Cluster Prototypes. *IEEE Access*, 10, 101556–101574. https://doi.org/10.1109/ACCESS.2022.3208957
  7. Han, X., Armenakis, C., & Jadidi, M. (2020). DBscan Optimization for Improving Marine Trajectory Clustering and Anomaly Detection. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, 43(B4), 455–461. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-455-2020
  8. Han, X., Armenakis, C., & Jadidi, M. (2021). Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN. *Sustainability (Switzerland)*, 13(15). https://doi.org/10.3390/su13158162
  9. Handayani, M. P., Kim, H., Lee, S., & Lee, J. (2023). Navigating Energy Efficiency: A Multifaceted Interpretability of Fuel Oil Consumption Prediction in Cargo Container Vessel Considering  the Operational and Environmental Factors. Journal of Marine Science and Engineering, 11(11). https://doi.org/10.3390/jmse11112165
  10. He, J., Hao, Y., & Wang, X. (2021). An Interpretable Aid Decision-Making Model for Flag State Control Ship Detention Based on SMOTE and XGBoost. *Journal of Marine Science and Engineering*, 9(2), 1–19. https://doi.org/10.3390/jmse9020156
  11. Horel, E., Giesecke, K., Storchan, V., & Chittar, N. (2020). Explainable Clustering and Application to Wealth Management Compliance. *ICAIF 2020 - 1st ACM International Conference on AI in Finance*. https://doi.org/10.1145/3383455.3422530
  12. Huang, C., Qi, X., Zheng, J., Zhu, R., & Shen, J. (2023). A Maritime Traffic Route Extraction Method Based on Density-Based Spatial Clustering of Applications with Noise for Multi-Dimensional Data. *Ocean Engineering*, 268, 113036. https://doi.org/10.1016/J.OCEANENG.2022.113036
  13. Huang, I. L., Lee, M. C., Nieh, C. Y., & Huang, J. C. (2023). Ship Classification Based on AIS Data and Machine Learning Methods. *Electronics*, 13(1), 98. https://doi.org/10.3390/ELECTRONICS13010098
  14. Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data. *Sensors*, 21(15). https://doi.org/10.3390/s21155200
  15. Kim, D., Handayani, M. P., Lee, S., & Lee, J. (2023). Feature Attribution Analysis to Quantify the Impact of Oceanographic and Maneuverability Factors on Vessel Shaft Power Using Explainable Tree-Based Model. *Sensors*, 23(3). https://doi.org/10.3390/s23031072
  16. Lan, H., Wang, S., & Zhang, W. (2024). Predicting Types of Human-Related Maritime Accidents with Explanations Using Selective Ensemble Learning and SHAP Method. *Heliyon*, 10(9). https://doi.org/10.1016/j.heliyon.2024.e30046
  17. Lee, J., Eom, J., Park, J., Jo, J., & Kim, S. (2024). The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data. *Sustainability (Switzerland)*, 16(6). https://doi.org/10.3390/su16062381
  18. Li, X., Ha, J., & Lee, S. (2024). Unveiling the Roles of Public Bike Systems: From Leisure to Multimodal Transportation. *Travel Behaviour and Society*, 34. https://doi.org/10.1016/j.tbs.2023.100705
  19. Li, Z., Li, R., Yuan, L., Cui, J., & Li, F. (2024). A Benchmarking Framework for Eye-Tracking-Based Vigilance Prediction of Vessel Traffic Controllers. *Engineering Applications of Artificial Intelligence*, 129. https://doi.org/10.1016/j.engappai.2023.107660
  20. Lo Duca, A., & Marchetti, A. (2022). Towards the Evaluation of Date Time Features in a Ship Route Prediction Model. *Journal of Marine Science and Engineering*, 10(8). https://doi.org/10.3390/jmse10081130
  21. Lötsch, J., & Malkusch, S. (2021). Interpretation of Cluster Structures in Pain-Related Phenotype Data Using Explainable Artificial Intelligence (XAI). *European Journal of Pain (United Kingdom)*, 25(2), 442–465. https://doi.org/10.1002/ejp.1683
  22. Lover, J., Gjaerum, V. B., & Lekkas, A. M. (2021). Explainable AI Methods on a Deep Reinforcement Learning Agent for Automatic Docking. *IFAC-PapersOnLine*, 54(16), 146–152. https://doi.org/10.1016/J.IFACOL.2021.10.086
  23. Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. *Advances in Neural Information Processing Systems*, 30. https://github.com/slundberg/shap
  24. Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S. I. (2020). From Local Explanations to Global Understanding with Explainable AI for Trees. *Nature Machine Intelligence*, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9
  25. Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K. W., Newman, S. F., Kim, J., & Lee, S. I. (2018).Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering 2018 2:10, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0
  26. Ma, Y., Zhao, Y., Yu, J., Zhou, J., & Kuang, H. (2023). An Interpretable Gray Box Model for Ship Fuel Consumption Prediction Based on the SHAP Framework. *Journal of Marine Science and Engineering*, 11(5). https://doi.org/10.3390/jmse11051059
  27. Morichetta, A., Casas, P., & Mellia, M. (2019). Explain-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis. *Big-DAMA 2019 - Proceedings of the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication Networks*, Part of CoNEXT 2019, 22–28. https://doi.org/10.1145/3359992.3366639
  28. Su, M., Lee, H. J., Wang, X., & Bae, S.-H. (2024). Fuel Consumption Cost Prediction Model for Ro-Ro Carriers: A Machine Learning-Based Application. *Maritime Policy and Management*. https://doi.org/10.1080/03088839.2024.2303120
  29. UNSD_MM. (2020). Overview of AIS Dataset - AIS Handbook. *UN Statistics Wiki*. https://unstats.un.org/wiki/display/AIS/Overview+of+AIS+dataset
  30. Veerappa, M., Anneken, M., Burkart, N., & Huber, M. F. (2022). Validation of XAI Explanations for Multivariate Time Series Classification in the Maritime Domain. *Journal of Computational Science*, 58. https://doi.org/10.1016/j.jocs.2021.101539
  31. Wang, H., Yan, R., Wang, S., & Zhen, L. (2023). Innovative Approaches to Addressing the Tradeoff Between Interpretability and Accuracy in Ship Fuel Consumption Prediction. *Transportation Research Part C: Emerging Technologies*, 157. https://doi.org/10.1016/j.trc.2023.104361
  32. Wang, L., Gopal, R., Shankar, R., & Pancras, J. (2022). Forecasting Venue Popularity on Location-Based Services Using Interpretable Machine Learning. *POMS*, 31(7), 2773–2788. https://doi.org/10.1111/POMS.13727
  33. Yan, R., Wu, S., Jin, Y., Cao, J., & Wang, S. (2022). Efficient and Explainable Ship Selection Planning in Port State Control. *Transportation Research Part C: Emerging Technologies*, 145. https://doi.org/10.1016/j.trc.2022.103924
  34. Zhang, C., Zou, X., & Lin, C. (2022). Fusing XGBoost and SHAP Models for Maritime Accident Prediction and Causality Interpretability Analysis. *Journal of Marine Science and Engineering*, 10(8). https://doi.org/10.3390/jmse10081154
  35. Zhang, T., Yin, J., Wang, X., & Min, J. (2023). Prediction of Container Port Congestion Status and Its Impact on Ship’s Time in Port Based on AIS Data. *Maritime Policy and Management*. https://doi.org/10.1080/03088839.2023.2165185
Share
Back to top
International Journal of Systematic Innovation, Electronic ISSN: 2077-8767 Print ISSN: 2077-7973, Published by AccScience Publishing