Exploring maritime movement information: an explainable AIap-proach using Hi-DBSCANand SHAPanalysis

Maritime movement information is pivotal for several applications, including monitoring and examining vessel activities, ensuring efficient and secure navigation, logistics optimisation, and enhancing safety and environmental protection. The maritime industry relies on Automatic Identification System (AIS) data, which provides infor-mation on movement of vessels at sea. Determining meaningful and useful insights from this data is a challenge. The complexity and volume of the information make it difficult for traditional methods to provide in-depth insights and explanations. This paper presents an innovative Explainable AI (XAI) approach to explore maritime movement information using AIS data by leveraging high dimensional Density-Based Spatial Clustering of Applications with Noise (Hi-DBSCAN) algorithm and SHAP (SHapley Additive exPlanations) values in a novel way. Through ex-periments using real AIS datasets, the study reveals the efficacy of SHAP in determining the influence of AIS features on cluster formation. Results from two distinct AIS datasets demonstrate the efficacy of this method. This approach effectively unravels the ‘black box’ nature of clustering, providing maritime stakeholders with a clearer understanding of vessel behaviour patterns. For instance, in one dataset, the course of the vessel was identified as the most significant feature impacting clustering outcomes. Furthermore, the study explores SHAP's potential for anomaly detection by identifying data points with inconsistent feature influences. This study demonstrates that integrating Hi-DBSCAN clustering with SHAP analysis offers a transparent and interpretable method for under-standing vessel behaviour patterns from maritime movement information and extraction of meaningful insights. This framework provides maritime stakeholders with insights beyond traditional pattern recognition, with trans-parency and explainability, allowing for a deeper understanding and more informed and data-driven decisions in maritime operations.
- Abuella, M., Atoui, M. A., Nowaczyk, S., Johansson, S., & Faghani, E. (2023). Data-Driven Explainable Artificial Intelligence for Energy Efficiency in Short-Sea Shipping. In *Lecture Notes in Computer Science* (including subseries *Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics*): Vol. 14175 LNAI. https://doi.org/10.1007/978-3-031-43430-3_14
- AccessAIS - MarineCadastre.gov. (n.d.). Retrieved November 26, 2023, from https://marinecadastre.gov/accessais/
- Alvarez-Garcia, M., Ibar-Alonso, R., & Arenas-Parra, M. (2024). A Comprehensive Framework for Explainable Cluster Analysis. *Information Sciences*, 663, 120282. https://doi.org/10.1016/J.INS.2024.120282
- Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI. *Information Fusion*, 58, 82–115. https://doi.org/10.1016/J.INFFUS.2019.12.012
- Barredo-Arrieta, A., Lana, I., & Del Ser, J. (2019). What Lies Beneath: A Note on the Explainability of Black-box Machine Learning Models for Road Traffic Forecasting. *2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019*, 2232–2237. https://doi.org/10.1109/ITSC.2019.8916985
- Bobek, S., Kuk, M., Szelazek, M., & Nalepa, G. J. (2022). Enhancing Cluster Analysis With Explainable AI and Multidimensional Cluster Prototypes. *IEEE Access*, 10, 101556–101574. https://doi.org/10.1109/ACCESS.2022.3208957
- Han, X., Armenakis, C., & Jadidi, M. (2020). DBscan Optimization for Improving Marine Trajectory Clustering and Anomaly Detection. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, 43(B4), 455–461. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-455-2020
- Han, X., Armenakis, C., & Jadidi, M. (2021). Modeling Vessel Behaviours by Clustering AIS Data Using Optimized DBSCAN. *Sustainability (Switzerland)*, 13(15). https://doi.org/10.3390/su13158162
- Handayani, M. P., Kim, H., Lee, S., & Lee, J. (2023). Navigating Energy Efficiency: A Multifaceted Interpretability of Fuel Oil Consumption Prediction in Cargo Container Vessel Considering the Operational and Environmental Factors. Journal of Marine Science and Engineering, 11(11). https://doi.org/10.3390/jmse11112165
- He, J., Hao, Y., & Wang, X. (2021). An Interpretable Aid Decision-Making Model for Flag State Control Ship Detention Based on SMOTE and XGBoost. *Journal of Marine Science and Engineering*, 9(2), 1–19. https://doi.org/10.3390/jmse9020156
- Horel, E., Giesecke, K., Storchan, V., & Chittar, N. (2020). Explainable Clustering and Application to Wealth Management Compliance. *ICAIF 2020 - 1st ACM International Conference on AI in Finance*. https://doi.org/10.1145/3383455.3422530
- Huang, C., Qi, X., Zheng, J., Zhu, R., & Shen, J. (2023). A Maritime Traffic Route Extraction Method Based on Density-Based Spatial Clustering of Applications with Noise for Multi-Dimensional Data. *Ocean Engineering*, 268, 113036. https://doi.org/10.1016/J.OCEANENG.2022.113036
- Huang, I. L., Lee, M. C., Nieh, C. Y., & Huang, J. C. (2023). Ship Classification Based on AIS Data and Machine Learning Methods. *Electronics*, 13(1), 98. https://doi.org/10.3390/ELECTRONICS13010098
- Kim, D., Antariksa, G., Handayani, M. P., Lee, S., & Lee, J. (2021). Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data. *Sensors*, 21(15). https://doi.org/10.3390/s21155200
- Kim, D., Handayani, M. P., Lee, S., & Lee, J. (2023). Feature Attribution Analysis to Quantify the Impact of Oceanographic and Maneuverability Factors on Vessel Shaft Power Using Explainable Tree-Based Model. *Sensors*, 23(3). https://doi.org/10.3390/s23031072
- Lan, H., Wang, S., & Zhang, W. (2024). Predicting Types of Human-Related Maritime Accidents with Explanations Using Selective Ensemble Learning and SHAP Method. *Heliyon*, 10(9). https://doi.org/10.1016/j.heliyon.2024.e30046
- Lee, J., Eom, J., Park, J., Jo, J., & Kim, S. (2024). The Development of a Machine Learning-Based Carbon Emission Prediction Method for a Multi-Fuel-Propelled Smart Ship by Using Onboard Measurement Data. *Sustainability (Switzerland)*, 16(6). https://doi.org/10.3390/su16062381
- Li, X., Ha, J., & Lee, S. (2024). Unveiling the Roles of Public Bike Systems: From Leisure to Multimodal Transportation. *Travel Behaviour and Society*, 34. https://doi.org/10.1016/j.tbs.2023.100705
- Li, Z., Li, R., Yuan, L., Cui, J., & Li, F. (2024). A Benchmarking Framework for Eye-Tracking-Based Vigilance Prediction of Vessel Traffic Controllers. *Engineering Applications of Artificial Intelligence*, 129. https://doi.org/10.1016/j.engappai.2023.107660
- Lo Duca, A., & Marchetti, A. (2022). Towards the Evaluation of Date Time Features in a Ship Route Prediction Model. *Journal of Marine Science and Engineering*, 10(8). https://doi.org/10.3390/jmse10081130
- Lötsch, J., & Malkusch, S. (2021). Interpretation of Cluster Structures in Pain-Related Phenotype Data Using Explainable Artificial Intelligence (XAI). *European Journal of Pain (United Kingdom)*, 25(2), 442–465. https://doi.org/10.1002/ejp.1683
- Lover, J., Gjaerum, V. B., & Lekkas, A. M. (2021). Explainable AI Methods on a Deep Reinforcement Learning Agent for Automatic Docking. *IFAC-PapersOnLine*, 54(16), 146–152. https://doi.org/10.1016/J.IFACOL.2021.10.086
- Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. *Advances in Neural Information Processing Systems*, 30. https://github.com/slundberg/shap
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S. I. (2020). From Local Explanations to Global Understanding with Explainable AI for Trees. *Nature Machine Intelligence*, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9
- Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K. W., Newman, S. F., Kim, J., & Lee, S. I. (2018).Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering 2018 2:10, 2(10), 749–760. https://doi.org/10.1038/s41551-018-0304-0
- Ma, Y., Zhao, Y., Yu, J., Zhou, J., & Kuang, H. (2023). An Interpretable Gray Box Model for Ship Fuel Consumption Prediction Based on the SHAP Framework. *Journal of Marine Science and Engineering*, 11(5). https://doi.org/10.3390/jmse11051059
- Morichetta, A., Casas, P., & Mellia, M. (2019). Explain-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis. *Big-DAMA 2019 - Proceedings of the 3rd ACM CoNEXT Workshop on Big Data, Machine Learning and Artificial Intelligence for Data Communication Networks*, Part of CoNEXT 2019, 22–28. https://doi.org/10.1145/3359992.3366639
- Su, M., Lee, H. J., Wang, X., & Bae, S.-H. (2024). Fuel Consumption Cost Prediction Model for Ro-Ro Carriers: A Machine Learning-Based Application. *Maritime Policy and Management*. https://doi.org/10.1080/03088839.2024.2303120
- UNSD_MM. (2020). Overview of AIS Dataset - AIS Handbook. *UN Statistics Wiki*. https://unstats.un.org/wiki/display/AIS/Overview+of+AIS+dataset
- Veerappa, M., Anneken, M., Burkart, N., & Huber, M. F. (2022). Validation of XAI Explanations for Multivariate Time Series Classification in the Maritime Domain. *Journal of Computational Science*, 58. https://doi.org/10.1016/j.jocs.2021.101539
- Wang, H., Yan, R., Wang, S., & Zhen, L. (2023). Innovative Approaches to Addressing the Tradeoff Between Interpretability and Accuracy in Ship Fuel Consumption Prediction. *Transportation Research Part C: Emerging Technologies*, 157. https://doi.org/10.1016/j.trc.2023.104361
- Wang, L., Gopal, R., Shankar, R., & Pancras, J. (2022). Forecasting Venue Popularity on Location-Based Services Using Interpretable Machine Learning. *POMS*, 31(7), 2773–2788. https://doi.org/10.1111/POMS.13727
- Yan, R., Wu, S., Jin, Y., Cao, J., & Wang, S. (2022). Efficient and Explainable Ship Selection Planning in Port State Control. *Transportation Research Part C: Emerging Technologies*, 145. https://doi.org/10.1016/j.trc.2022.103924
- Zhang, C., Zou, X., & Lin, C. (2022). Fusing XGBoost and SHAP Models for Maritime Accident Prediction and Causality Interpretability Analysis. *Journal of Marine Science and Engineering*, 10(8). https://doi.org/10.3390/jmse10081154
- Zhang, T., Yin, J., Wang, X., & Min, J. (2023). Prediction of Container Port Congestion Status and Its Impact on Ship’s Time in Port Based on AIS Data. *Maritime Policy and Management*. https://doi.org/10.1080/03088839.2023.2165185