Custom hardware design for peripheral artery disease detection: Field-programmable gate arrays and application-specific integrated circuits

Atherosclerotic disorders, such as peripheral artery disease (PAD), have a significant negative impact on patient outcomes. Inadequate treatment and poor detection rates can result in cardiovascular complications and limb loss. There is great promise for improving the detection and treatment of PAD and other medical disorders through machine learning (ML) and artificial intelligence (AI) techniques. This paper highlights the use of field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) to implement the fundamental ideas of AI and ML, specifically in the treatment of PAD. It emphasizes how these technologies can enhance drug selection, improve patient care, and refine disease phenotyping. This paper also describes how the integration of AI and ML with FPGA and ASIC technology can provide accurate and effective solutions to complex medical challenges, representing a significant breakthrough in medical analytics.
- Aboyans, V., Ricco, J. B., Bartelink, M. L., et al. (2017). 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Kardiologia Polska, 75(11), 1065-1160.
- Adegbola, A., Behrendt, C. A., Zyriax, B. C., et al. (2022). The impact of nutrition on the development and progression of peripheral artery disease: A systematic review. Clinical Nutrition, 41(1), 49-70.
- Ahmed, H., Chen, L., & Zhao, M. (2017). Real-time detection of peripheral arterial disease using FPGA-based systems. IEEE Transactions on Biomedical Circuits and Systems, 11(3), 558-565.
- Alcaín, E., Fernandez, P. R., Nieto, R., Montemayor, A. S., Vilas, J., Galiana-Bordera, A., & Torrado-Carvajal, A. (2021). Hardware architectures for real-time medical imaging. Electronics, 10(24), Article 3118.
- Altera Corporation. (2015). Arria 10 Core Fabric and General Purpose I/Os Handbook. Altman, M. B., Wan, W., Hosseini, A. S., et al. (2024). Machine learning algorithms for FPGA implementation in biomedical engineering applications: A review. Heliyon, 10(4), e26652.
- Banerjee, A., Gupta, S., & Kumar, V. (2019). Real-time data processing in PAD diagnosis using AI and ASICs. IEEE Transactions on Biomedical Engineering, 66(9), 2475-2483.
- Banerjee, S., Das, S., & Chattopadhyay, S. (2018). FPGA-based real-time medical imaging: A review. Journal of Medical Imaging and Health Informatics, 8(7), 1464-1475.
- Beckman, J. A., Schneider, P. A., & Conte, M. S. (2021). Advances in revascularization for peripheral artery disease: Revascularization in PAD. Circulation Research, 128(12), 1885-1912.
- Beyer, T., & Pichler, B. A. (2009). A decade of combined imaging: From a PET attached to a CT to a PET inside an MR. European Journal of Nuclear Medicine and Molecular Imaging, 36, 1-2.
- Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358-2361.
- Brass, E. P., Lewis, R. J., Lipicky, R., Murphy, J., & Hiatt, W. R. (2006). Risk assessment in drug development for symptomatic indications: A framework for the prospective exclusion of unacceptable cardiovascular risk. Clinical Pharmacology & Therapeutics, 79(2), 165-172.
- Buch, V. H., Ahmed, I., & Maruthappu, M. (2018). Artificial intelligence in medicine: Current trends and future possibilities. British Journal of General Practice, 68(668), 143-144.
- Campia, U., Gerhard-Herman, M., Piazza, G., & Goldhaber, S. Z. (2019). Peripheral artery disease: Past, present, and future. American Journal of Medicine, 132(10), 1133-1141.
- Chen, J., Zhang, Y., & Wang, Y. (2017). FPGA-based medical imaging systems: A survey. IEEE Transactions on Medical Imaging, 36(7), 1442-1459.
- Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A small-footprint high-throughput accelerator for ubiquitous machine learning. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 269-284).
- Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2016). DianNao: A small-footprint high-throughput accelerator for ubiquitous machine learning. ACM SIGARCH Computer Architecture News, 42(1), 269-284.
- Chen, Y., Emer, J., & Sze, V. (2016). Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. In Proceedings.Criqui, M. H., & Aboyans, V. (2015). Epidemiology of peripheral artery disease. Circulation Research, 116(9), 1509-1526.
- Currie, G. (2019). Intelligent imaging: Radiomics and artificial neural networks in heart failure. Journal of Medical Imaging and Radiation Sciences, 50(4), 571-574.
- Elbadawi, A., Elgendy, I. Y., Saad, M., et al. (2021). Contemporary revascularization strategies and outcomes among patients with diabetes with critical limb ischemia: Insights from the National Inpatient Sample. JACC: Cardiovascular Interventions, 14, 664-674.
- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
- Flores, A. M., Demsas, F., Leeper, N. J., & Ross, E. G. (2021). Leveraging machine learning and artificial intelligence to improve peripheral artery disease detection, treatment, and outcomes. Circulation Research, 128(12), 1833-1850.
- Forghani, N., Salehi, F., Rad, A. B., Tovar-Lopez, F., Gordon, I., & Abbott, D. (2021). Intelligent oscillometric system for automatic detection of peripheral arterial disease. IEEE Journal of Biomedical and Health Informatics, 25(8), 3209-3218.
- Forghani, N., Salehi, F., Rad, A. B., Tovar-Lopez, F., Gordon, I., & Abbott, D. (2022). DeepPAD: Detection of peripheral arterial disease using deep learning. IEEE Sensors Journal, 22(16), 16254-16262.
- Friberg, J. E., Tian, L., Li, J., Miller, L. A., Mcdermott, M. M., Criqui, M. H., Berendsen, M. A., & Hirsch, A. T. (2022). Ankle-and toe-brachial index for peripheral artery disease identification: Unlocking clinical data through novel methods. Circulation: Cardiovascular Interventions, 15(3), e011092.
- Gao, J. M., Liu, Y. Z., Zhang, S., Zhou, X. L., Zhu, Y. Y., Yang, Y. X., & Wu, Z. H. (2022). Identifying peripheral arterial disease in elderly patients using machine-learning algorithms. Aging Clinical and Experimental Research, 1-7.
- Geiss, L. S., Li, Y., Hora, I., et al. (2019). Resurgence of diabetes-related nontraumatic lower-extremity amputation in the young and middle-aged adult U.S. population. Diabetes Care, 42, 50-54.
- Gibbons, C., Richards, S., Valderas, J. M., & Campbell, J. (2017). Supervised machine learning algorithms can classify open-text feedback of doctor performance with human-level accuracy. Journal of Medical Internet Research, 19(3), 65.
- Gu, X., Zhu, Y., Zhou, S., et al. (2016). A real-time FPGA-based accelerator for ECG analysis and diagnosis using association-rule mining. ACM Transactions on Embedded Computing Systems (TECS), 15(2), 25.
- Gupta, A., Sharma, R., & Verma, P. (2018). Real-time hemodynamic analysis using FPGA for PAD screening. Journal of Vascular Ultrasound, 46(3), 299-307.
- Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., & Dally, W. J. (2016). EIE: Efficient inference engine on compressed deep neural network. In Proceedings of the 43rd International Symposium on Computer Architecture (pp. 243-254).
- Hashimoto, D. A., Rosman, G., Witkowski, E. R., Gao, L., Meireles, O. R., & Majmudar, M. D. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70-76.
- Horowitz, M. (2014). 1.1 Computing’s energy problem [and what we can do about it]. In IEEE International Solid-State Circuits Conference (pp. 10-14).
- Huang, Y., Zhang, Y., & Wang, Y. (2021). FPGA-based medical devices: Challenges and solutions. IEEE Journal of Biomedical and Health Informatics, 25(3), 1022-1033.
- Huthart, S., Saratzis, A., Lai, N., Baker, S., Rashid, S., & McWilliams, R. G. (2022). Validation of a standardised duplex ultrasound classification system for the reporting and grading of peripheral arterial disease. *European Journal of Vascular and Endovascular Surgery, 64(2-3), 210-216.
- Iglehart, J. K. (2006). The new era of medical imaging. New England Journal of Medicine, 355, 1502.
- Jana, B., & Nath, P. K. (2022). A single-chip solution for diagnosing peripheral arterial disease. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(5), 671-675.
- Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
- Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
- Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., & Sato, K. (2017). In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (pp. 1-12).
- Kim, S., Lee, H., & Park, J. (2020). FPGA-based classification of Doppler ultrasound signals for PAD diagnosis. IEEE Access, 8, 176192-176201.
- Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8-17.
- Kwon, H., Lee, S., Park, H., Yoo, S., & Kim, S. (2017). A 20nm 6GB Function-in-Memory HBM with GDDR6 Interface and On-Die Stacked-DRAM Microarchitecture for Deep Learning Applications. In IEEE International Solid-State Circuits Conference (pp. 30-32).
- Langlotz, C., Allen, B., Erickson, B., et al. (2019). A roadmap for foundational research on artificial intelligence in medical imaging: From the 2018 NIH/RSNA/ACR/The academy workshop: Radiology.
- Lareyre, F., et al. (2023). Applications of artificial intelligence for patients with peripheral artery disease. Journal of Vascular Surgery, 77(2), 650-658.
- Lee, C., Park, M., & Kim, S. (2020). Enhancing PAD diagnosis with AI and ASIC technologies. Journal of Medical Devices, 44(2), 157-164.
- Lee, D., Park, S., & Kim, H. (2021). High-speed FPGA-based system for Doppler spectrogram analysis in PAD diagnosis. IEEE Journal of Biomedical and Health Informatics, 25(1), 180-188.
- Lee, J., Kim, J., & Kim, H. (2020). FPGA-based wearable health devices: Challenges and design considerations. IEEE Transactions on Biomedical Engineering, 67(5), 1426-1437.
- Li, R. C., Asch, S. M., & Shah, N. H. (2020). Developing a delivery science for artificial intelligence in healthcare. NPJ Digital Medicine, 3, 107.
- Li, S., Zhang, S., & Li, X. (2018). An overview of the development of AI ASICs: Challenges and opportunities. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(8), 1107-1111.
- Liew, C. (2018). The future of radiology augmented with artificial intelligence: A strategy for success. European Journal of Radiology, 102, 152-156.
- Litjens, G., Kooi, T., Bejnordi, B. E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
- Lo, Y.-C., Rensi, S. E., Torng, W., & Altman, R. B. (2018). Machine learning in chemoinformatics and drug discovery. Drug Discovery Today, 23(8), 1538-1546.
- McBee, M. P., Awan, O. A., Colucci, A. T., et al. (2018). Deep learning in radiology. Academic Radiology, 25(11), 1472-1480.
- Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., & Wu, H. (2017). Mixed precision training. In Proceedings of the International Conference on Learning Representations.
- Misra, S., Shishehbor, M. H., Takahashi, E. A., & Sidawy, A. N. (2019). Perfusion assessment in critical limb ischemia: Principles for understanding and the development of evidence and evaluation of devices: A scientific statement from the American Heart Association. Circulation, 140(9), e657-e672.
- Mistelbauer, G., Vöhl, M., Groeller, E., & Müller, C. (2021). Semi-automatic vessel detection for challenging cases of peripheral arterial disease.Computers in Biology and Medicine, 133, 104344.
- Moons, B., & Verhelst, M. (2017). Energy-efficient ConvNets through approximate computing. In Proceedings of the IEEE International Symposium on Circuits and Systems (pp. 1-4).
- Munn, Z., & Jordan, Z. (2011). The patient experience of high technology medical imaging: A systematic review of the qualitative evidence. Radiography, 17, 323-331.
- Murray, C. J., Barber, R. M., Foreman, K. J., et al. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: Quantifying the epidemiological transition. The Lancet, 386, 2145-2191.
- Nagarajan, K., Holland, B., George, A. D., Slatton, K. C., & Lam, H. (2011). Accelerating machine-learning algorithms on FPGAs using pattern-based decomposition. Journal of Signal Processing Systems, 62, 43-63.
- Napolitano, G., Marshall, A., Hamilton, P., & Gavin, A. T. (2016). Machine learning classification of surgical pathology reports and chunk recognition for information extraction noise reduction. Artificial Intelligence in Medicine, 70, 77-83.
- Nordanstig, J., James, S., Andersson, M., et al. (2020). Mortality with paclitaxel-coated devices in peripheral artery disease. New England Journal of Medicine, 383(26), 2538-2546.
- Olin, J. W. (2000). Thromboangiitis obliterans [Buerger’s disease]. New England Journal of Medicine, 343, 864-869.
- Ong, M.-S., Magrabi, F., & Coiera, E. (2012). Automated identification of extreme-risk events in clinical incident reports. Journal of the American Medical Informatics Association, 19(e1), e110-e118.
- Patel, R., & Singh, A. (2022). FPGA-based medical solutions. Journal of Medical Technology, 15(4), 123-134.
- Patel, S., Johnson, M., & Williams, D. (2016). FPGA-based adaptive filtering for PAD detection. IEEE Transactions on Biomedical Engineering, 63(4), 635-642.
- Rafnsson, S. B., & Fowkes, G. (2020). Positive and negative well-being of older adults with symptomatic peripheral artery disease: A population-based investigation. JRSM Cardiovascular Disease, 9, 1-9.
- Ramya. (2024, April 23).Medical imaging and signal processing: Advancements enabled by FPGA design. Retrieved from vlsifirst.com
- Rodríguez-Andina, J. J., Valdes-Pena, M. D., & Moure, M. J. (2015). Advanced features and industrial applications of FPGAs—A review. IEEE Transactions on Industrial Informatics, 11(4), 853-864.
- Rojas, J. C., & Wang, E. M. (2020). The role of artificial intelligence in remote patient monitoring. Journal of the American Medical Informatics Association, 27(6), 887-892.
- Rolls, A. E., Maurel, B., Davis, M., et al. (2016). A comparison of accuracy of image-versus hardware-based tracking technologies in 3D fusion in aortic endografting. European Journal of Vascular and Endovascular Surgery, 52(3), 323-331.
- Sajid, M., Sharma, R., Beheshti, I., & Tanveer, M. (2024). Decoding cognitive health using machine learning: A comprehensive evaluation for diagnosis of significant memory concern. arXiv preprint arXiv:2405.07070.
- Samanta, R., VamsiKrishna, N., Selvaprabhu, P., Rajeshkumar, V., & Rajamani, V. (2023). VLSI implementation of hybrid memristor-based logic gates. International Journal of Electrical and Electronics Research, 11(3), 733-737.
- Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160.
- Sasikala, P., & Mohanarathinam, A. (2024). A powerful peripheral arterial disease detectionusing machine learning-based severity level classification model and hyperparameter optimization methods. Biomedical Signal Processing and Control, 90, 105842.
- Schorr, E. N., & Treat-Jacobson, D. (2013). Methods of symptom evaluation and their impact on peripheral artery disease (PAD) symptom prevalence: A review. Vascular Medicine, 18(2), 95-111.
- Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
- Smith, J., Brown, T., & Kumar, R. (2018). Application-specific integrated circuits in medical devices: Opportunities and challenges. IEEE Transactions on Biomedical Circuits and Systems, 12(5), 1045-1053.
- Smith, J., Kumar, R., & Brown, T. (2019). FPGA implementation of a machine learning algorithm for PAD detection. Journal of Biomedical Engineering, 41(2), 232-240.
- Smiti, A. (2020). When machine learning meets medical world: Current status and future challenges. Computer Science Review, 37, 100280.
- Suetens, P. (2017). Fundamentals of medical imaging (3rd ed.). Cambridge University Press.
- Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2295-2329.
- Talib, M. A., Majzoub, S., & Nasir, Q. (2021). A systematic literature review on hardware implementation of artificial intelligence algorithms. Journal of Supercomputing, 77(8), 9352-9379.
- Thompson, R., Wilson, K., & Evans, J. (2022). FPGA-based multi-sensor integration for PAD diagnosis. Biomedical Signal Processing and Control, 71, Article 103081.
- Thrall, J. H., Li, X., Li, Q., et al. (2018). Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. Journal of the American College of Radiology, 15(3 Pt B), 504-508.
- Tomkins, S., Li, A. H., Reavis, R. D., Sanabria, J. P., Poirier, C., Na, Y., Huang, J., Bergman, P., & Ovink, K. (2023). Showing high-achieving college applicants past admissions outcomes increases undermatching. Proceedings of the National Academy of Sciences, 120(45), e2306017120.
- Venkatesh, B. A., Nauffal, V., Noda, C., et al. (2017). Baseline assessment and comparison of arterial anatomy, hyperemic flow, and skeletal muscle perfusion in peripheral artery disease: The Cardiovascular Cell Therapy Research Network 'Patients with Intermittent Claudication Injected with ALDH Bright Cells' [CCTRN PACE] study. American Heart Journal, 183, 24-34.
- Wang, S. M., Dong, X., Tsai, T. H., Kim, H. K., Bai, J. P., Elkins, M., & Silva, P. S. (2023). Development and integration of machine learning algorithm to identify peripheral arterial disease: Multistakeholder qualitative study. JMIR Formative Research, 7, e43963.
- Weissler, E. H., Garratt, K. N., Cziraky, M. J., Rosenberg, M. A., Peterson, E. D., Jones, W. S., Berger, J. S., Yancy, C. W., Rockhold, F. W., Ginsburg, G. S., Sekercioglu, N., DeVore, A. D., & Patel, M. R. (2023). Outcomes among patients with peripheral artery disease in the Aspirin Dosing: A Patient-Centric Trial Assessing Benefits and Long-Term Effectiveness (ADAPTABLE) study. Vascular Medicine, 28(2), 122-130.
- Xie, Y., Wang, Y., & Zhang, Y. (2019). FPGA-based medical solutions: Challenges and opportunities. IEEE Transactions on Biomedical Circuits and Systems, 13(2), 297-308.
- Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 19.
- Zhang, D., Yan, Y., Zhang, J., Ma, S., Lin, T., & Zhan, C. (2022). Machine learning approach to predict in-hospital mortality in patients admitted for peripheral artery disease in the United States. Journal of the American Heart Association, 11(20), e026987.
- Zhang, Y., Li, X., & Wang, J. (2022). FPGA-based portable device for peripheral artery disease screening. IEEE Transactions on Medical Devices, 29(3), 335-342.
- Zhao, Y., Zhang, L., & Xu, F. (2021). Low-power AI and ASIC solutions for continuous PAD monitoring. IEEE Transactions on Circuits and Systems, 68(6), 1955-1963.
- Zhao, Y., Zhang, L., & Xu, F. (2021). Low-power FPGA system for continuous monitoring of PAD. IEEE Transactions on Circuits and Systems, 68(6), 1955-1963.
- Zynq Net: An FPGA-Accelerated Embedded Convolutional Neural Network. (2018). In Proceedings of the 15th ACM International Conference on Computing Frontiers (pp. 309-312).